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Abstract-In this study, the measurement update step of the 
Extended Kalman Filter (EKF)-based Simultaneous 
Localization and Mapping (SLAM) is improved. The 
computational complexity of the measurement uncertainty 
matrix inversion operation in the measurement update step is 
reduced via using Jacobi iteration method. It is observed that, 
the calculation of the measurement uncertainty matrix inverse 
by using Jacobi iteration method generates numerically more 
stable results than naive single and batch update operations. 
Moreover, it produces more accurate results than the results of 
Cholesky decomposition with less complexity.  

I. INTRODUCTION 

The simultaneous localization and map building (SLAM) 
techniques tries to solve the problem for an autonomous 
vehicle to start in an unknown location in an unknown 
environment to incrementally build a map of this 
environment. The robot uses this map to compute its own 
location simultaneously. It can only sense noisy, probabilistic 
observations of its surroundings without knowing its exact 
location. During the robot moves, uncertainty is added into an 
already uncertain pose. 

 Among the methods proposed in literature to solve the 
SLAM problem, the methods based on Bayesian estimation 
theory has been the most successful ones. Many applications 
in the literature use Extended Kalman Filter (EKF) to solve 
nonlinear estimation problems such as position tracking, 
localization and SLAM [1-10]. However, the quadratic 
computational complexity of the EKF makes it difficult to 
apply in real time. Unscented Kalman Filter (UKF) is a more 
reliable estimator than EKF while the system model is highly 
nonlinear. The past of the UKF is relatively short compared to 
EKF. By approximating the probability density function, 
instead of the nonlinear function itself, UKF SLAM [11, 12] 
received a considerable attention. Yet it did not make any 
improvement to the computational complexity of the EKF. 
FastSLAM [13-17] utilizes particle filters and improves the 
computational complexity considerably compared to EKF and 
UKF. However in case of having insufficient particle numbers 
in the filter; FastSLAM can not estimate the state successfully.   

In this study, reducing the complexity of the measurement 
update step of the EKF-based SLAM applications is aimed. 
Inverse of the measurement uncertainty matrix is calculated in 
the measurement update step of EKF. Minimum complexity of 
the matrix inversion operation is O(n2.4), achieved by 
Coppersmith–Winograd algorithm.  

 
We present the Jacobi iteration method instead of matrix 

inversion process in EKF to reduce computational 
complexity. In EKF-based SLAM applications the innovation 
vector, the difference between the predicted and the actual 
observations, is taken into account for the state estimation via 
using batch or single update for each observation. The 
convergence of the measurement uncertainty matrix inversion 
by Jacobi iteration method produces numerically more stable 
and accurate results than the results of single and batch 
update approaches which use Cholesky decomposition with 
less complexity. 

The measurement uncertainty matrix, whose inverse is 
calculated by Jacobi iteration method, is a symmetric and 
positive-definite matrix. The computational complexity of the 
inversion calculation of that special matrix by Jacobi iteration 
method is O(N), while the size of the measurement 
uncertainty matrix is NxN.  However, the iterative solution of 
Jacobi method is converged to the inverse of the interested 
matrix in 8 of 10 experiments. Each of the EKF-based SLAM 
approaches with single and batch Cholesky updates, those use 
naive matrix inversion calculation; and batch update, that uses 
matrix inversion by Jacobi iteration, were run 10 times. The 
averages of the Root Mean Square Error (RMSE) results of 
the approaches are given in the experimental results.  

In the second section of the paper, the EKF algorithm is 
described. In Third section the single and batch Cholesky 
updates and complexity of them are given. In forth section, the 
matrix inversion by Jacobi iteration method and the 
complexity analysis of the EKF algorithm which uses Jacobi 
iteration method for matrix inversion process are introduced. 
In the Fifth section the experimental results are illustrated and 
conclusion is given in the final section. 

II. EKF-BASED SLAM ALGORITHM 

EKF-based SLAM algorithm bases on Bayes Filters. The 
state of the system, the state of the robot and the environment, 
at time t is expressed by random variables xt.  In the 
probabilistic SLAM methods, the state of the robot and the 
environment can only be expressed through the conditional 
probability distributions of the sensor data. The probability 
distribution representing the uncertainty at each point in the 
time is called belief, )x(bel t . Bayes filters apply two update 
rules successively to estimate the system state [8]. 
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The predictive belief at time t is calculated just before the 
observation ( tz ) is taken and uses the control data ( :tu1 ) by 
the time t [8].  This step is also called control update, and 
expressed as in (1). 

 ),|()( :11:1 tttt uzxPxbel   

The state estimate given in (1) is corrected according to 
(2), using sensor measurements ( :tz1 ) and the control data 
( :tu1 ) by the time t. This step is called as measurement update 
or the posterior belief of the system state and calculated 
whenever a sensor provides a new observation [8].   

 ),|()( :1:1 tttt uzxPxbel   

Kalman filters are the most widely used variant of Bayes 
filters. Standard Kalman filter assumes that the state 
transitions and measurement transitions are linear with added 
Gaussian noise. EKF overcomes the linearity assumption by 
linearizing the nonlinear state and measurement transition 
functions via Taylor expansion.  

The nonlinear state transition function g and measurement 
transition function h is expressed as in (3) and (4) 
respectively with added noises t and t . 

 tttt xugx   ),( 1  (3) 

 ttt xhz  )(  

EKF represents beliefs by the mean vector tμ  and the 
covariance matrix tΣ  at time t. 

The Taylor expansion of state transition function g is given 
as in (5) and (6). The Jacobian tG is the value of first 
derivative of g at the point µt-1 [8]. 

 ))(,(g),(g),(g '
1t1t1tt1tt1tt μxμuμuxu   

 )()(g)(g 1t1tt1tt1tt μxGμ,ux,u    

Similarly, the Taylor expansion of measurement transition 
function h is given as in (7) and (8). The Jacobian tH  is the 
value of first derivative of h at the point µt [8]. 

 ))((h)(h)(h '
ttttt μxμμx   

 )()(h)(h ttttt μxHμx   

The update rules corresponding to the prediction and 
correction steps of the Bayes filter and other details of the 
EKF algorithm can be found in [8-10].  

In this study observation has two-dimensions, which are 
called the range and the bearing information of a laser 
scanner. Range is the distance between the robot and 
obstacles (landmarks); bearing is the angular difference 
between the robot and the obstacle. After taking the 
observation tz , data association procedure is done to detect 
whether the measurements belong to an already existing 
landmark or to a new landmark. The measurements that 
belong to already existing landmarks cause update process in 
the filter. The single and batch update processes differ in 
terms of the calculating the innovation vectors and evaluating 
the effects of the associated landmarks on the update process. 
In the single update, the interested calculations and 
evaluations of the filter are handled one-by-one for each 
measurement value. In the batch update, they are handled 
together.   

The pseudo code of the EKF-based SLAM algorithm [18] 
is given as follows:  

1. [ tμ , tΣ ] = Predict ( 1tμ  , 1tΣ  ) 
2. tz  = Get observations ( ) 
3. [ fz , nz ] = Data associate ( tμ , tΣ , tz , R) 
4. [ tμ , tΣ ] = Update Map ( tμ , tΣ , fz , R) 
5. [ tμ , tΣ ] = Augment  Map ( tμ , tΣ , nz , R) 

 
where R is the covariance matrix of the observation noise; 

fz is the vector of measurements that belong to associated 
(already existing) landmarks; nz  is the vector of 
measurements that belong to unseen landmarks. 

 

III. SINGLE AND BATCH UPDATE IN EKF ALGORITHM 

If the effects of the measurements of the associated 
landmarks on the update process of the filter are taken into 
account one-by-one for each measurement, it is called single 
update process; if they are handled together, it is called batch 
update. Pseudo codes and complexity analysis of two 
updating approaches are given in the following subsections.    

 

A. Single Update Approach 
The associated measurements are handled one-by-one in 

the single update process. The difference between the actual 
and the predicted measurements is called innovation vector. 
The size of the innovation vector is two for only one 
measurement, because each measurement has two-
dimensions, which are called range and bearing information. 
The measurement estimation uncertainty matrix is a 2x2 
matrix for only one measurement. 

While N is the number of associated measurements, pseudo 
code of the single update approach: 

1. For i=1 to N 
a. [ pz , tH ] = h ( tμ ) //h is the observ. model 
b. v = pz –  fz  // v is the innovation vector 
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c. RHΣHS T
tttt   // meas. uncert. matrix 

d. 1
t

T
ttt SHΣK   // Kalman gain 

e. vKμμ ttt   // update of the mean vec. 
f. tttt Σ)HK(IΣ  // update of the cov. 

2. End for  
The Kalman gain, tK , is calculated by using the inverse of 

the measurement uncertainty matrix, tS . To calculate the 
inverse of tS ; Cholesky decomposition can be used as in 
[18]. 

The complexity of the inversion of a 2x2 matrix is O(22.4); 
therefore the computational complexity of the tS ’s inversion 
operation is O(Nx22.4) in the single update for all 
observations, while N is the number of the associated 
measurements. 

B. Batch Update Approach 
The associated measurements are handled together within a 

joint matrix in the batch update process. The innovation 
vector is a 2Nx1 vector when the number of the associated 
measurements is N, because each measurement has two-
dimensions (features). And also the measurement estimation 
uncertainty matrix is  a 2Nx2N matrix.  

Pseudo code of the batch update approach: 
1. For i=1 to N 

a. [ pz , 2i):12i,2i:1(2iHt  ] = h ( tμ ) 
b. v(2i-1:2i) = pz –  fz  // v is innovation vec. 
c. R2i):12i,2i:1RR(2i   

2. End for  
3. RRHΣHS T

tttt   // meas. uncertainty matrix 
4. 1

t
T
ttt SHΣK   // Kalman gain 

5. vKμμ ttt   // update of the mean vec. 
6. tttt Σ)HK(IΣ  // update of the cov. 

 
To calculate the inverse of the measurement uncertainty 

matrix, tS ; Cholesky decomposition can be used as in [18].  
The optimal complexity of the inverse calculation of a 

2Nx2N matrix is O((2N)2.4); hence the computational 
complexity of the tS ’s inversion operation is O(N2.4x22.4) in 
the batch update for whole observations. 

 

IV. MATRIX INVERSION BY JACOBI ITERATION METHOD 

The linear equation system, which has N variables and N 
equations, is given in (9) [19]: 

 bAx   

The solution of (9) is obtained as, 

 1x A b  

If b is chosen as an unit matrix I , the solution of (9) is the 
inverse of A. Due to the computational load involved in 
taking the inverse of A, rearrange (9) as 

 ( )   D L U x I  

where D, L and U are the diagonal matrix, lower and upper 
triangular matrices respectively, yields 

  1  x D (D A)x I  

Now assign initial matrix 0x   to the x  on the right-hand 
side and calculate 1x on the left-hand side. in general case, we 
can write 

  1
1k k


   x D (D A)x I  

If A is a dominant matrix, the absolute values of the 
eigenvalues of the matrix  1D (D A)  are less than 1. When 
this condition exists, kx  approaches the inverse of A. A 
dominant matrix has the absolute value of the diagonal entry 
in a row which is larger than or equal to the sum of the 
absolute values of all the other entries in that row. If that 
condition is satisfied, inverse of the matrices, which have 
even large size; can be calculated in a few iterations by using 
Jacobi iteration method [19]. 

The measurement uncertainty matrices, those are generated 
in this study, are symmetric and positive-definite matrixes. 
They also provide the above conditions generally. The 
sufficient iteration number is M for an MxM matrix to 
converge the solution by Jacobi iteration method in this study. 

If Jacobi iteration method is used for the matrix inversion 
in the single update, the complexity is O(2N) where N is the 
number of the associated measurements. O(2) is the 
complexity of calculating the inverse of a 2x2 matrix by 
Jacobi iteration method. This is a bit smaller than the 
complexity of the naive single update, it is not significant. 
However in the naive batch update for all of the 
measurements, calculating the inverse of the measurement 
uncertainty matrix costs O(N2.4x22.4); while it costs O(2N) by 
using Jacobi iteration method for matrix inversion in the 
batch update. It is significantly less than the complexity of 
naive batch update. 

All of the operations, except the inverse matrix calculation, 
are the same in the naive update approaches and the 
approaches which use Jacobi iteration method for inverse 
matrix calculation. The complexity results for both single and 
batch update are the same, O(2N), when Jacobi iteration 
method is used for matrix inversion. The difference between 
the single updates, which uses and does not use Jacobi 
iteration method, is not significant. Hence the results of the 
single update that uses Jacobi iteration method are not given 
in the experimental results.   

TABLE I 
COMPLEXITY ANALYSIS OF THE APPROACHES 

Approach 
Single 

Cholesky 
update 

Batch Cholesky 
update 

Batch update that 
uses Jacobi 

iteration method 
for matrix inverse  

Complexity  O(22.4xN) O(M2.4)=O(22.4xN2.4) O(M) = O(2xN) 
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The computational complexity of the methods are given in 
Table I when the number of the associated landmarks is N 
and M = 2xN. 

 

V. EXPERIMENTAL RESULTS 

Experiments are performed by using SLAM software of 
Bailey and Nieto [18]. Single and batch updates, which use 
Cholesky update, are run 10 times. Batch update, which uses 
Jacobi iteration for inverse matrix calculation, is also run 10 
times. Averages of the Root Mean Square Errors (RMSE) for 
robot position during the exploration of each approach are 
calculated and given in this section.  

The inverse matrix calculation of the interested matrix by 
Jacobi iteration could not converged in all the experiments. It 
is observed that, the solution obtained by Jacobi iteration 
method converged to matrix inverse and the filter is concluded 
successfully with the ratio of 8/10 (in terms of experiment 
numbers); it diverged with the ratio 2/10. When the filter, 
which uses Jacobi iteration for matrix inversion, diverged; it 
was run more than 10 experiments to acquire 10 successful 
experiment results.  

Maximum likelihood data association is used in the 
application.  

The environment, that the experiments are implemented in, 
is shown in the Fig.1. The blue stars are landmarks, green 
dots are waypoints those are used for calculate steering angle. 

RMSE results of the robot position with respect to 
approaches are given in Table II. Robot closed the loop once 
in the environment. 

TABLE II 
RMSE RESULTS OF THE APPROACHES FOR ONE LOOP IN THE ENVIRONMENT 

Approach 
Single 

Cholesky 
update 

Batch 
Cholesky 

update 

Batch update that uses 
Jacobi method for 

matrix inverse  

RMSE 4.68184 3.91332 3.21603 

 

From the results of the experiments, it is clear that, the 
minimum RMSE result is achieved by the batch update 
approach which use Jacobi iteration method for inverse 
matrix calculation. Although inverse matrix calculation by 
Jacobi iteration does not converged every time, it is better 
than a commonly chosen approach, Cholesky update, when it 
converges.  

The effect of the number of loop closings in the 
environment to RMSE results of the approaches is also 
examined. Hence Jacobi iteration method is decided as 
whether it is confident or not, when the number of the loop 
closing increases. When robot closed the loop twice in the 
environment, the RMSE results of the robot position with 
respect to approaches are given in Table III.  

TABLE III 
RMSE RESULTS OF THE APPROACHES FOR TWO LOOPS IN THE ENVIRONMENT 

Approach 
Single 

Cholesky 
update 

Batch 
Cholesky 

update 

Batch update that uses 
Jacobi method for 

matrix inverse 

RMSE 3.9766 3.7661 3.0791 

 
The RMSE value for each approach decreases when the 

number of loop closings is two in the environment. Batch 
update approach, that uses Jacobi iteration, is obviously seen 
as the best resulting approach in the terms of RMSE of the 
robot position.  

VI. CONCLUSION 

In this study, the computational complexity of the 
calculation of the measurement uncertainty matrix’s inverse, 
which is done in the measurement update process of EKF-
SLAM, is examined. That computational complexity is 
decreased via using Jacobi iteration method for inverse matrix 
calculation. 

The approach, that uses Jacobi iteration method for inverse 
matrix calculation, is more accurate and generates less RMSE 
value than the approaches which use Cholesky single and 
batch updates, with respect to experimental results. 
Furthermore, each approach generates less RMSE value of 
the robot position, when the number of the loop closings in 
the environment increases. In this case, the approach that uses 
Jacobi iteration method also gives the least RMSE results. 
However, the solution obtained by Jacobi iteration method 
cannot converge to the interested matrix inverse for each 
experiment because the interested spectral radius is not less 
than 1 or the interested matrix is not a dominant matrix.  

Using Jacobi iteration method in a system model, which 
provides the convergence conditions for each iteration, can 
significantly decrease the computational complexity of that 
system. 
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