YILDIZ

Rescue Simulation League

Computer Eng. Dept., Yıldız Technical Uni., Istanbul, Turkey Sırma Yavuz, M. Fatih Amasyalı, Muhammet Balcılar, Yücel Uzun Khudaydad Mahmoodi

Achievements and Contributions of Team YILDIZ

- 2nd place in RoboCup Iran Open 2012
- 2nd place in RoboCup World Championship 2012
- 1st place RoboCup Iran Open 2013

User Interface

3D orientation of the robot Control Interface Self position identification Combined laser and camera data

Map Interface

Autonomous Victim Detection

Usage of Histograms of Oriented Gradients

Air Robot Localization

Effective Message Passing

Blind flooding (BF) and Table-based routing (TB) propagation models of WSS

Scenario	Method	Total Package Speed (pck/sec)	Package Speed for each robot (pck/sec)
	BF	132.45	33.11
	TB	398.32*	99.58
l II	BF	43.52	5.44
l II	TB	312.76*	39.09
III	BF	15.16	1.01
III	TB	229.11*	15.27

Autonomous Navigation

To navigate autonomously our algorithm first selects a point based on following potential formula:

 $P = w_1.dist(point, robot) + w_2.(#of undiscovered neigh)$

Afterwards, robot moves to the point which has the greatest potential using a special version of A*

F = dist(start, current) +
apprxdist(current, finish)
+ penalty(current)

penalty(current)
= # of neighbouring obstacles